[1] | Stephane Doncieux. Apprendre aux robots à faire face à l'imprévu. Industries et Technologies, 1045, 2021. Cahier Technique. [ bib ] |
[2] | Antonin Raffin, Bastian Deutschmann, and Freek Stulp. Fault-tolerant six-dof pose estimation for tendon-driven continuum mechanisms. Frontiers in Robotics and AI, 8:11, 2021. [ bib | https ] |
[3] | Achkan Salehi, Alexandre Coninx, and Stephane Doncieux. BR-NS: An Archive-Less Approach to Novelty Search, page 172–179. Association for Computing Machinery, New York, NY, USA, 2021. [ bib | https ] |
[4] | Antonin Raffin, Jens Kober, and Freek Stulp. Smooth exploration for robotic reinforcement learning. In Conference on Robot Learning, 2021. [ bib ] |
[5] | Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22(268):1--8, 2021. [ bib | .html ] |
[6] | Astrid Merckling, Nicolas Perrin-Gilbert, Alex Coninx, and Stéphane Doncieux. Exploratory state representation learning. Frontiers in Robotics and AI, 9, 2022. [ bib ] |
[7] | Salehi Achkan, Achkan Salehi, Alexandre Coninx, and Stephane Doncieux. Few-shot quality-diversity optimization. IEEE Robotics and Automation Letters, pages 1--10, 2022. [ bib ] |
This file was generated by bibtex2html 1.99.